
TWMS J. Pure Appl. Math., V.5, N.1, 2014, pp.50-58

ON THE EXISTENCE AND UNIQUENESS OF SOLUTION FOR A CLASS
OF FRACTIONAL ORDER BOUNDARY VALUE PROBLEMS

AZIZOLLAH BABAKHANI1

Abstract. In this paper, we discuss existence and uniqueness of solutions to nonlinear frac-

tional order ordinary differential equations with boundary conditions in an ordered Banach

space. We use the Caputo fractional differential operator and the nonlinearity depends on the

fractional derivative of an unknown function. Schauder’s fixed point Theorem is the main tool

used here to establish the existence and the Banach contraction principle to show the uniqueness

of the solution.
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1. Introduction

The study of fractional differential equations has become a very important and useful area
of mathematics over the last few decades due to its numerous applications in various areas of
physics, chemistry and engineering such as viscoelasticity [8, 29, 30], dynamical processes in
self-similar structures [19], biosciences [20], signal processing [26], systems control theory [33],
electrochemistry [25] and diffusion processes [12, 21]. Further, fractional calculus has found many
applications in classical mechanics [28] and the calculus of variations [1] and is a very useful and
simple means for obtaining solutions to non-homogenous linear ordinary and partial differential
equations. For more details, we refer the reader to [23, 24]. There are several approaches
to fractional derivatives such as Riemann-Liouville, Caputo,Weyl, Hadamard and Grunwald-
Letnikov, etc. Applied problems require those definitions of a fractional derivative that allow the
utilization of physically interpretable initial and boundary conditions. The Caputo fractional
derivative satisfies these demands, while the Riemann-Liouville derivative is not suitable for
mixed boundary conditions. Recently, the theory on existence and uniqueness of solutions of
linear and nonlinear fractional differential equations has attracted the attention of many authors,
see for example, [2]-[7], [11, 13, 17, 18, 31, 32, 34], [35]-[38] and references therein. However,
many of the physical systems can better be described by integral boundary conditions. Integral
boundary conditions are encountered in various applications such as population dynamics, blood
flow models, chemical engineering and cellular systems. Moreover, boundary value problems with
integral boundary conditions constitute a very interesting and important class of problems. They
include two-point, three-point, multi-point and nonlocal boundary value problems as special
cases, see [3, 10, 14, 15] and references therein.
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In this paper, we study existence and uniqueness of nonlinear fractional differential equations
of the type

Dαx(t) = f (t, x(t), Dγx(t)) , for each t ∈ J = [0, a], (1)

satisfying the boundary conditions

x(0) + µ

a∫

0

x(s)ds = x(a), x′(0) = 0, (2)

where 1 ≤ α < 2, 0 < γ < α and Dα,Dγ are the Caputo fractional derivatives.

2. Preliminaries

In this section, we recall some basic definitions and lemmas from fractional calculus [16, 22, 27].
Riemanns modified form of Liouvilles fractional integral operator is a generalization of Cauchys
iterated integral formula

t∫

a

dt1

t1∫

a

dt2 · · ·
tn−1∫

a

g(tn)dtn =
1

Γ(n)

t∫

a

(t− s)n−1g(s)ds (3)

where Γ is Eulers gamma function. Clearly, the right-hand side of Eqn. (3) is meaningful for
any positive real value of n. Hence, it is natural to define the fractional integral as follows:

Definition 2.1. If x ∈ C([a, b]) and α > 0, then the Riemann-Liouville fractional integral is
defined by

Iα
a+x(t) =

1
Γ(α)

t∫

a

(t− s)α−1x(s)ds. (4)

Definition 2.2. Let α ∈ R, n − 1 < α ≤ n, n ∈ N and x ∈ C((a, b), R), then the Caputo
fractional derivative of order α defined by

Dα
a+x(t) = In−α

a+

(
dnx(t)

dtn

)
.

We denote Dα
a+x(t) by Dα

a x(t) and Iα
a+x(t) by Iα

a x(t). Also Dαx(t) and Iαx(t) refer to Dα
0+x(t)

and Iα
0+x(t) respectively.

The fractional integral of x(t) = (t− a)γ , a ≥ 0, γ > −1 is given as

Iαx(t) =
Γ(γ + 1)

Γ(γ + α + 1)
(t− a)γ+α. (5)

The following properties of fractional integrals and fractional differential operators will be useful
for our further discussion.

Iα (Iγx(t)) = Iγ (Iαx(t)) = Iα+γx(t), α, γ ≥ 0.

The integer order derivative operator Dm commutes with fractional order Dα, i.e,

Dm (Dαx(t)) = Dm+αx(t) = Dα (Dmx(t)) . (6)

The fractional operator and fractional derivative operator do not commute in general. Then the
following result can be found in [9, 16].
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Lemma 2.1. [9, 16] For α > 0, the general solution of the fractional differential equation
Dαx(t) = 0 is given by

x(t) =
r−1∑

i=0

cit
i, ci ∈ R, i = 0, 1, 2, · · · , r − 1, r = [α] + 1,

where [α] denotes the integer part of the real number α.

In view of Lemma 2.1 it follows that

Iα (Dαx(t)) = x(t) +
r−1∑

j=0

cjt
j for some cj ∈ R, j = 0, 1, · · · , r − 1. (7)

But in the opposite way we have,

Dα (Iγ(t)) = Dα−γx(t). (8)

By C(J, R) we denote the Banach space of all continuous functions from J into R and we
define B = {x(t) : x(t) ∈ C[0; 1], Dγx(t) ∈ C[0; 1]} equipped with the norm

‖x(t)‖ = max
t∈[0, 1]

|x(t)|+ max
t∈[0, 1]

|Dγx(t)|.

The space B is a Banach space [32].

3. Existence and uniqueness of solutions

In the following, we give existence and uniqueness results for fractional differential equation
(1) with the integral boundary conditions (2).

Definition 3.1. A function x ∈ B is said to be a solution of equation (1) if x satisfies the
equation Dαx(t) = f (t, x(t), Dγx(t)) on J and the condition (2).

Lemma 3.1. Assume that f : [0, a]×R2 → R is continuous. Then x ∈ C[0, a] is a solution of
the boundary value problem (1) and (2) if and only if x(t) is the solution of the integral equation

x(t) =

a∫

0

G(t, s)f(s, x(s), Dγx(s)) ds, (9)

where G(t, s) is the Green‘s function given by

G(t, s) =





(a−s)α−1

aµΓ(α) − (a−s)α−α a(t−s)α−1

aΓ(α+1) , if 0 ≤ s < t,

(a−s)α−1

aµΓ(α) − (a−s)α

aΓ(α+1) , if t ≤ s ≤ a.

(10)

Proof. Assume that x ∈ C[0, a] is a solution of the fractional differential equation (1) satisfying
boundary conditions (2). Then by Lemma 2.1 and Eqn.(7), we can reduce the problem (1)-(2)
to equivalent integral equation

x(t) = Iαf(t, x(t), Dγx(t))− c0 − c1t = (11)

=
1

Γ(α)

t∫

0

(t− s)α−1f(s, x(s), Dγx(s))ds− c0 (12)
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for some constants c0, c1. x′(0) = 0 yields c1 = 0 and using Fubini‘s integral theorem, we have
a∫

0

x(s)ds =

a∫

0





1
Γ(α)

t∫

0

(t− u)α−1f(u, x(u), Dγx(u))du− c0



 ds =

=

a∫

0





1
Γ(α)

a∫

0

(s− u)α−1ds



 f(u, x(u), Dγx(u))du− c0a =

=

a∫

0

1
Γ(α + 1)

(a− u)αf(u, x(u), Dγx(u))du− c0 − c1ta.

Applying the boundary condition (2) we obtain x(0) = −c0 and

x(a) =
1

Γ(α)

a∫

0

(a− s)α−1f(s, x(s), Dγx(s))ds− c0.

Hence

c0 =
1
a

a∫

0

(a− s)α

Γ(α + 1)
− (a− s)α−1

µΓ(α)
f(s, x(s), Dγx(s))ds.

Substituting c0 into Eqn. (12) we derive

x(t) =
1

Γ(α)

t∫

0

(t− s)α−1f(s, x(s), Dγx(s))ds +

+
1
a

a∫

0

(a− s)α

Γ(α + 1)
− (a− s)α−1

µΓ(α)
f(s, x(s), Dγx(s))ds =

=
1
a

t∫

0

{
(a− s)α−1

aµΓ(α)
− (a− s)α − α a(t− s)α−1

aΓ(α + 1)

}
f(s, x(s), Dγx(s))ds +

+

a∫

t

{
(a− s)α−1

aµΓ(α)
− (a− s)α

aΓ(α + 1)

}
f(s, x(s), Dγx(s))ds =

=

a∫

0

G(t, s)f(s, x(s), Dγx(s))ds

which completes the proof. ¤

Theorem 3.1. Let f : [0, a] × R2 → R be continuous and there exists a function η : [0, a] →
[0, ∞], such that |f(t, x, y)| ≤ η(t)(λ1|x| + λ2|y|), λ1, λ2 ≥ 0, λ1 + λ2 ≤ δ, where δ =
min{ 2α

m‖η‖(3+a)aα , αΓ(α−γ+1)
‖η‖aα−γ }, m = max

{
1

a|µ|Γ(α) ,
1

aΓ(α+1) ,
1

Γ(α+1)

}
. Then, the boundary value

problem (1)-(2) has a solution.

Proof. Define an operator F : B → B by

Fx(t) =

a∫

0

G(t, s)f(s, x(s), Dγx(s))ds. (13)
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In order to show that the boundary value problem (1)-(2) has a solution, it is sufficient to prove
that the operator F has a fixed point. For s < t, equation (10) yields

|G(t, s)| ≤ (a− s)α−1

a|µ|Γ(α)
+

(a− s)α

aΓ(α + 1)
+

α (t− s)α−1

Γ(α + 1)
≤

≤ m
{
(a− s)α−1 + (a− s)α + (t− s)α−1

}
.

On the other hand, for s ≥ t, we have

|G(t, s)| ≤ m
{
(a− s)α−1 + (a− s)α

}
.

For any x ∈ B, define the set Ω = {x ∈ B : ‖x‖ ≤ R, R > 0}. For x ∈ Ω, under condition on f

and using Eqn. (10), we obtain

|Fx(t)| =

a∫

0

|G(t, s)||f(s, x(s), Dγx(s))|ds ≤ (λ1 + λ2)‖x‖‖η‖
a∫

0

|G(t, s)|ds ≤

≤ (λ1 + λ2)Rm‖η‖
a∫

0

{
(a− s)α−1 + (a− s)α + (t− s)α−1

}
ds ≤

≤ δRm‖η‖(aα(1 + a) + |t− a|α + tα)
α

.

Hence,

max
t∈[0, a]

|Fx(t)| ≤ δRm‖η‖(3 + a)aα

α
.

Using Definition 2.2 and Eqn. (10), we have

|Dγ(Fx(t))| =
∣∣∣∣I1−γ

{
dFx(t)

dt

}∣∣∣∣ =

=

∣∣∣∣∣∣
I1−γ

a∫

0

∂G(t, s)
∂t

f(s, x(s), Dγx(s))

∣∣∣∣∣∣
ds ≤

≤ α− 1
aΓ(α + 1)

I1−γ

t∫

0

(t− s)α−2|f(s, x(s), Dγx(s))| ds ≤

≤ α− 1
aΓ(α + 1)

I1−γ

t∫

0

(t− s)α−2η(s) {a|x(s)|+ b|Dγx(s)|} ds ≤

≤ 2(λ1 + λ2)‖x‖(α− 1)‖η‖
aΓ(α + 1)

I1−γ

t∫

0

(t− s)α−2ds ≤

≤ 2(λ1 + λ2)R(α− 1)Γ(α− 1)‖η‖
aΓ(α + 1)

Iα−γ(1) =
2δR‖η‖

aαΓ(α− γ + 1)
tα−γ+1.

Hence,

max
t∈[0, a]

|Dγ(Fx(t))| ≤ 2δR‖η‖aα−γ

αΓ(α− γ + 1)
.
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Therefore, ‖Fx(t)‖ ≤ R
2 + R

2 = R. Thus, F : Ω → Ω. Finally, it remains to show that F is
completely continuous. For any x ∈ Ω and for 0 ≤ t1 ≤ t2 ≤ a, we have

|Fx(t2)−Fx(t1)| ≤
a∫

0

|G(t2, s)− G(t1, s)||f(s, x(s), Dγx(s))|ds ≤

≤ lm(λ1 + λ2)|
t2∫

0

(
(a− s)α−1 − (a− s)α − α a(t2 − s)α−1

)
ds +

+

a∫

t2

(
(a− s)α−1 − (a− s)α

)
ds−

−
t1∫

0

(
(a− s)α−1 − (a− s)α − α a(t1 − s)α−1

)
ds−

−
a∫

t1

(
(a− s)α−1 − (a− s)α

)
ds| ≤ lm(λ1 + λ2)|tα1 − tα2 |.

Hence, it follows that ‖Fx(t2)− Fx(t1)‖ → 0, as t2 → t1. By Arzela-Ascoli theorem, it follows
that F : Ω → Ω is completely continuous. Thus by Schaurder‘s fixed point Theorem, the
boundary value problem (1)-(2) has a solution. ¤

Theorem 3.2. Let f : [0, a] × R2 → R be continuous. If there exists a function η : [0, a] →
[0, ∞], such that such that |f(t, x, y)− f(t, x̃, ỹ)| ≤ η(t)(|x− x̃|+ |y − ỹ|) for each t ∈ [0, a]
and all x, x̃, y, ỹ ∈ R and 2(α − 1)‖η‖aα−γ−1 < Γ(α + 1). Then the boundary value problem
(1)-(2) has a unique solution.

Proof. Under condition on f , we have

|Fx(t)−F x̃(t)| ≤
a∫

0

|G(t, s)| |f(s, x(s), Dγx(s))− f(s, x̃(s), Dγ x̃(s))| ds ≤

≤ m‖η‖‖x− x̃‖
a∫

0

{
(a− s)α−1 + (a− s)α + (t− s)α−1

}
ds ≤

≤ m‖η‖(1− α)|t− a|α + (1 + a)aα

α
‖x− x̃‖.

Using Eqn. (10) we conclude

|Dγ(Fx)(t)−Dγ(F x̃)(t)| = |I1−γ

{
d{(Fx)(t)− (F x̃)(t)}

dt

}
| ≤

≤ I1−γ

a∫

0

|∂G(t, s)
∂t

(f(s, x(s), Dγx(s))− f(s, x̃(s), Dγ x̃(s))| ds ≤

≤ α− 1
aΓ(α + 1)

I1−γ

t∫

0

(t− s)α−2|(f(s, x(s), Dγx(s))− f(s, x̃(s), Dγ x̃(s))| ds ds ≤
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≤ α− 1
aΓ(α + 1)

I1−γ

t∫

0

(t− s)α−2η(s) {|x(s)− x̃(s)|+ |Dγx(s)−Dγ x̃(s)|} ds ≤

≤ 2(α− 1)‖η‖tα−γ

aΓ(α + 1)
‖x− x̃‖.

Thus, we have

‖Fx(t)−F x̃(t)‖ ≤ 2(α− 1)‖η‖aα−γ

Γ(α + 1)
‖x− x̃‖.

Therefore, by the contraction mapping Theorem, the boundary value problem (1)-(2) has a
unique solution. ¤

Example 3.1. Consider the following boundary value problem for nonlinear fractional order
differential equation

D 3
2 x(t) =

(
3et + υx(t) + ωD 1

2 x(t)
) 1

3
, t ∈ [0, 1], (14)

x′(0) = 0, x(0) +

1∫

0

x(t)dt = x(1),

where υ, ω are positive constant and µ = a = 1, m = 2√
π
, δ = 3

4 . On other hand f(t, x(t),

Dγx(t)) = 3

√
3e−t + υx(t) + ωD 1

2 x(t) satisfies the conditions required in Theorem 3.1, that is

f(t, x(t), D 1
2 x(t)) ≤ e−t + υ

3 |x(t)| + ω
3 |D

1
2 x(t)| ≤ (1 + e−t)

(
υ
3 |x(t)|+ ω

3 |D
1
2 x(t)|

)
. Then, Eqn.

(14) with assumed boundary conditions has a solution in Ω if υ + ω < 9
4 .

Example 3.2. Consider the following boundary value problem for linear fractional order differ-
ential equation

D 3
2 x(t) = e−t2

(
x(t) +D 1

2 x(t)
)

, t ∈ [0, 1], (15)

x′(0) = 0, x(0) +

1∫

0

x(t)dt = x(1).

Then, Eqn. (15) with assumed boundary conditions has unique solution in Ω.
In this example f(t, x(t), Dγx(t)) = e−t2

(
x(t) +D 1

2 x(t)
)

satisfies the conditions required in

Theorem 3.2 and moreover 2(3
2 − 1)‖η‖a 3

2
− 1

2
−1 < Γ(3

2 + 1) where a = 1, η(t) = e−t2 .

4. Conclusion

We considered a class of nonlinear fractional order differential equations involving Caputo
fractional derivative with lower terminal at 0 in order to study the existence solution satisfy-
ing the boundary conditions. The unique solution under Lipschitz condition is also derived.
For getting our results in this paper, Schauder’s fixed point theorem and Banach contraction
principle had played important roles. In order to illustrate our results several examples are
presented. Our research work in this paper can be generalized to multiterm nonlinear fractional
order differential equations with polynomial coefficients.
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